In the review 'Preclinical models for pulmonary drug delivery' by C Fernandes and R Vanbever (Expert Opin. Drug Deliv. (2009) 6(11):1231-1245), the references should have appeared in the text as follows:

On page 1236, the first two sentences should have appeared as:

'Permeability in 16HBE140- cells correlated with P app in Caco-2 cells, the most widely used intestinal cell line, with absorption rates in the isolated perfused rat lung and with absorption rate constants from the rat lung in vivo (Figure 4) [42]. Tronde et al. measured the absolute bioavailability and absorption rate of eight low-molecular-mass drugs from the rat lung in vivo [43]'

The following figures and tables should have appeared as follows:

Table 1. Anatomical characteristics of mammalian lungs [98,127].

Characteristics	Human (70 kg)	Dog (10 – 15 kg)	Rabbit (2.5 – 3.5 kg)	Guinea-pig (0.4 kg)	Rat (0.25 – 0.35 kg)	Mouse (0.02 – 0.04 kg)
Turbinate complexity	Simple	Very complex	Complex scroll	Complex scroll	Complex scroll	Complex scroll
Lung weight (g)	1000	100	18	inload	1.5	0.12
Lung symmetry	Dichotomous	Monopodial	Monopodial	Monopodial	Monopodial	Monopodial
Lung volume (ml)	4341	736	79.2	13	8.6	0.74
Surface area of the alveolar region (m ²)	143	40.7	5.8		0.4	0.07
Diameter of alveoli (μm)	219	126	88 1101 6011	65	70	47
Alveoli number (×10 ⁶)	950	1040	135	69	43	18
Alveolar macrophages (×10 ⁶)	5990	3940	142	58.8	29.1	2.9
Lining fluid volume (ml)	20 - 40 [128]	16.7 [129]	1.22 [130]		0.045 – 0.055 [112]	0.005 – 0.015 [131]

Table 2. Comparison of TEER, mannitol and FITC-dextran permeability among different alveolar epithelial cell culture models.

	Human alveolar epithelial cells [34]	Rat alveolar epithelial cells [35]	A549 cells [34]	Calu-3 cells [60]	Caco-2 cells [132]
TEER (ς cm²)	2180 ± 62	2450 ± 40	140 – 180 [133]	1000 - 1600	~ 350
Compound Mannitol			P_{app} (cm/s) $\times 10^{-8}$	13.5 ± 3	188 ± 11
FD-4 FD-10 FD-20	1.71 ± 0.25 1.05 ± 0.11 0.80 ± 0.04	1.29 ± 0.06 1.16 ± 0.09 1.13 ± 0.17	254 ± 1 149 ± 11 113 ± 12	0.6 ± 0.05 0.2 ± 0.03 0.1 ± 0.01	5.11 ± 0.36 1.16 ± 0.02
FD-40 FD-70	0.29 ± 0.03 0.19 ± 0.07	0.35 ± 0.06 0.15 ± 0.01	40 ± 6 21 ± 4	0.02 ± 0.001	0.82 ± 0.09

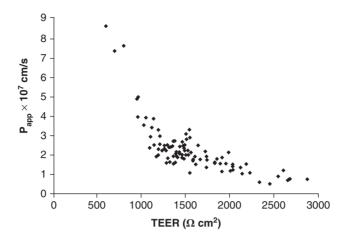


Figure 2. Relationship between TEER across rat alveolar epithelial cell monolayers and the apparent permeability coefficient (P_{app}) for 14C-mannitol.

Reproduced with permission from [56]. TEER: Transepithelial electrical resistance.

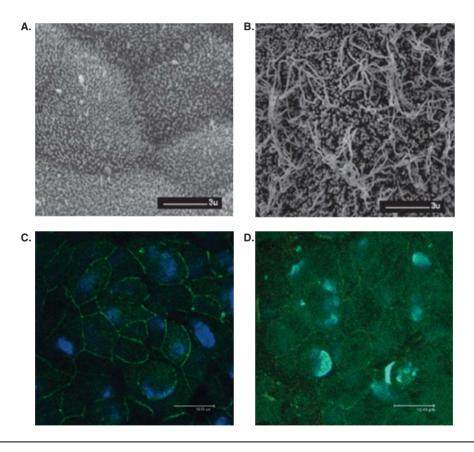


Figure 3. Calu-3 cells grown in a submerged culture (A, C) and in AIC (B, D) at 11 days of culture. A. Images from scanning electron microscopy show small microvilli and well-defined cell-cell boundaries in cell layers in a submerged culture. B. Calu-3 cells grown in AIC show heterogeneous population, some microvilli and immature cilia. C, D. Tight functional protein (ZO-1, green) and nuclei (DAPI, blue) labelling.

Reproduced with permission from [59].

AIC: Air-interface cultures.

The authors and publisher apologise for any inconvenience caused.

